The PICOSUN™ R-200 Advanced ALD systems are suitable for R&D on dozens of applications such as IC components, MEMS devices, displays, LEDs, lasers, and 3D objects such as lenses, optics, jewelry, coins, and medical implants.

The PICOSUN™ R-200 Advanced ALD system is the global market leader in advanced ALD research tools with hundreds of customer installations. It has become the tool of choice both for companies and research institutes driven by innovation.

The agile design enables the highest quality ALD film depositions together with the ultimate system flexibility to fit future needs and applications. The patented hot-wall design with fully separate inlets and instrumentation enables particle-free processing adaptable on a wide range of materials on wafers, 3D objects, and all nanoscale features. Excellent uniformity even on the most challenging through-porous, ultra-high aspect ratio, and nanoparticle samples is achieved thanks to our proprietary Picoflow™ technology. The PICOSUN™ R-200 Advanced systems are equipped with highly functional and easily exchangeable precursor sources for liquid, gaseous, and solid chemicals. Highly efficient and patented remote plasma option enables deposition of metals without the risk of short-circuiting or plasma damage. Integration with glove boxes, UHV systems, manual and automated loaders, cluster tools, powder chambers, roll-to-roll chambers, and various in situ analytics systems enable efficient and flexible research with good results no matter what your research area is now or might become later on.

Please feel free to contact us for more information or a quotation!
THE PRINCIPLE OF ALD

Introduction of molecules containing element A.

Adsorption of the molecules on the surface.

Introduction of molecules containing element B and reaction with element A on the surface.

Completion of one monolayer of compound AB.

Repeat cycle till desired film thickness is reached.